Selective affinity labeling of a 27-kDa integral membrane protein in rat liver and kidney with N-bromoacetyl derivatives of L-thyroxine and 3,5,3'-triiodo-L-thyronine.
نویسندگان
چکیده
125I-Labeled N-bromoacetyl derivatives of L-thyroxine and L-triiodothyronine were used as alkylating affinity labels to identify rat liver and kidney microsomal membrane proteins which specifically bind thyroid hormones. Affinity label incorporation was analyzed by ethanol precipitation and individual affinity labeled proteins were identified by autoradiography after separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions. Six to eight membrane proteins ranging in size from 17 to 84 kDa were affinity labeled by both bromoacetyl-L-thyroxine (BrAcT4) and bromoacetyl-L-triiodothyronine (BrAcT3). Affinity labeling was time- and temperature-dependent, and both reduced dithiols and detergents increased affinity labeling, predominantly in a 27-kDa protein(s). Up to 80% of the affinity label was associated with a 27-kDa protein (p27) under optimal conditions. Affinity labeling of p27 by 0.4 nM BrAc[125I]L-T4 was blocked by 0.1 microM of the alkylating ligands BrAcT4, BrAcT3, or 100 microM iodoacetate, by 10 microM concentrations of the non-alkylating, reversible ligands N-acetyl-L-thyroxine, 3,3',5'-triiodothyronine, 3,5-diiodosalicylate, and EMD 21388, a T4-antagonistic flavonoid. Neither 10 microM L-T4, nor 10 microM N-acetyltriiodothyronine or 10 microM L-triiodothyronine blocked affinity labeling of p27 or other affinity labeled bands. Affinity labeling of a 17-kDa band was partially inhibited by excess of the alkylating ligands BrAcT4, BrAcT3, and iodoacetate, but labeling of other minor bands was not blocked by excess of the competitors. BrAc[125I]T4 yielded higher affinity label incorporation than BrAc[125I]T3, although similar banding patterns were observed, except that BrAcT3 affinity labeled more intensely a 58,000-Da band in liver and a 53,000-55,000-Da band in kidney. The pattern of other affinity labeled proteins with p27 as the predominant band was similar in liver and kidney. Peptide mapping of affinity labeled p27 and p55 bands by chemical cleavage and protease fragmentation revealed no common bands excluding that p27 is a degradation product of p55. These data indicate that N-bromoacetyl derivatives of T4 and T3 affinity label a limited but similar constellation of membrane proteins with BrAcT4 incorporation greater than that of BrAcT3. One membrane protein (p27) of low abundance (2-5 pmol/mg microsomal protein) with a reactive sulfhydryl group is selectively labeled under conditions identical to those used to measure thyroid hormone 5'-deiodination. Only p27 showed differential affinity labeling in the presence of noncovalently bound inhibitors or substrates on 5'-deiodinase suggesting that p27 is likely to be a component of type I 5'-deiodinase in rat liver and kidney.
منابع مشابه
Affinity labeling of rat liver thyroid hormone nuclear receptor.
The thyroid hormone receptor from rat liver nuclei has been covalently labeled with the N-bromoacetyl derivatives of L-thyroxine (T4) and 3,3',5-triiodo-L-thyronine (T3). Displacement binding studies showed that, in the presence of 100-fold molar excess of unlabeled N-bromoacetyl-T3 or T4, binding of [125I]T3 or [125I]T4 was nearly totally inhibited. Heat inactivation of the receptor (55 degree...
متن کاملMolecular conformation of a halogen-free thyroxine analog: 4-Methoxy-3,5,3-trimethyl-L-thyronine N-acetyl ethyl ester.
The molecular conformation of the halogen-free thyroxine analog 4-methoxy-3,5,3'-trimethyl-L-thyronine -n-acetyl ethyl ester has been determined by x-ray diffraction techniques. The unsubstituted parent compound, trimethylthyronine, has significant biological activity in rat thymocyte tests when compared with the thyroid hormone 3,5,3'-triiodo-L-thyronine (T3). Although no activity data are ava...
متن کاملHigh affinity L-triiodothyronine binding to right-side-out and inside-out vesicles from rat and human erythrocyte membrane.
3,5,3'-Triiodo-L-thyronine (L-T3)-binding sites from rat and human red cells were characterized as to their distribution between the two surfaces of the membrane. Analysis of L-T3 binding to sealed right-side-out and inside-out vesicles from erythrocyte membrane revealed that high affinity L-T3-binding sites are located on the external side in rat erythrocytes and on the internal side in human ...
متن کاملSelective labelling and inactivation of creatine kinase isoenzymes by the thyroid hormone derivative N-bromoacetyl-3,3',5-tri-iodo-L-thyronine.
Besides their well-known regulation of transcription by binding to nuclear receptors, thyroid hormones have been suggested to have direct effects on mitochondria. In a previous study, incubation of rat heart mitochondria with 125I-labelled N-bromoacetyl-3,3',5-tri-iodo-L-thyronine (BrAcT3), a thyroid hormone derivative with an alkylating side chain, resulted in the selective labelling of a prot...
متن کاملEnzymic O-methylation of Iodinated Phenols and Thyroid Hormones.
In spite of the broad substrat’e specificity of catechol O-methyltransferases from animal sources, none of the monohydric phenols serves as a good substrate. For example, the enzyme purified from rat liver by Axelrod and Tomchick (3) transformed epinephrine and other catecholes to their corresponding 3-O-methyl derivatives, but did not react with synephrine (p-hydroxyphenylmethylaminoethanol) o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 265 11 شماره
صفحات -
تاریخ انتشار 1990